
Performance of a New CFD Flow Solver using a Hybrid

Programming Paradigm

M.J.Berger
Courant Institute, New York University, NY, NY, 10012

M.J. Aftosmis
NASA Ames Research Center, MS T27B, Moffett Field, CA. 94035

D.D. Marshall
Aerospace Engg., Georgia Institute of Tech., Atlanta, GA 30332

S.M. Murman
ELORET, MS T27B, Moffett Field, CA 94035

Abstract

This paper presents several algorithmic innovations and a hybrid programming style
that lead to highly scalable performance using shared memory for a new computa-
tional fluid dynamics flow solver. This hybrid model is then converted to a strict
message-passing implementation, and performance results for the two are compared.
Results show that using this hybrid approach our OpenMP implementation is actu-
ally marginally faster than the MPI version, with parallel speedups of up to 599 using
OpenMP and 486 out of 640 with MPI.

Key Words: parallel programming, shared address space, message passing, space-
filling curves

1 Introduction

One of the first choices to make when developing a new parallel application is whether to use
a message-based distributed-memory model with MPI or a shared-memory programming
model using parallel directives such as OpenMP. Both approaches have their advantages and
disadvantages. MPI is the most portable across multiple platforms, since it runs on both
distributed and shared-memory machines. With the number of disappearing languages and
architectures in the last twenty years, it is the safer way to insure longer lasting software.
On the other hand, since MPI involves an assembly-like attention to buffers and memory
management, the MPI route is generally recognized as the more tedious approach. Shared-
memory models offer a simpler path for code development. Often a developer of a shared-
memory application will start with a serial code and put in simple loop-level OpenMP
directives, obtaining incremental parallel improvements. Unlike MPI, when the parallel
performance is sufficiently high, the parallelization effort can stop.

1

However, as has been reported in the literature, incremental parallelization does not
typically yield good parallel scalability on large numbers of processors [12, 17]. It relies too
heavily on the compiler for loop level parallelization and does not pay enough attention to
memory locality. Compiler directives and other hints are insufficient to transform a serial
code into a high performing parallel code without more attention to memory issues early in
the design process.

In this paper we report on the development of a new computational fluid dynamics solver
using a hybrid of these two approaches. Our paradigm is to do explicit memory management,
complete with domain decomposition, duplicated variables, and explicit communication
steps (in other words, close to a distributed-memory model code), but implemented in
shared memory. This approach yields much higher performance than typically reported
for shared memory, while still being easier to implement and debug than MPI code. It
provides a simple path for a second step of conversion to MPI for distributed-memory
machines once the code has been tested and debugged. Experimental results with both
of these implementations will be reported in this paper. By using a subset of OpenMP
directives with careful attention to memory location, we believe that this approach will make
it possible to avoid an MPI conversion, at least a manual one. Instead, we believe that by
using a hybrid programming paradigm it should be possible to use software shared-memory
layers that sit on top of distributed-memory machines and still obtain good performance.

In the rest of this section we present some background material describing what a flow
solver looks like for the for the non-expert in computational fluid dynamics. We also review
some material on space-filling curves, which we make heavy use of in the rest of this paper.
In section 2 we describe the new OpenMP parallel flow solver, including its most important
aspects of domain partitioning, load balancing, and the data structures for communication.
Several algorithmic innovations that contribute to the scalability, in addition to the hybrid
programming paradigm, are described. Section 3 presents the small modifications needed
to convert the code to MPI. Most data structures were completely suitable (and highly
successful) for both approaches. Computational experiments for several realistically large
computational examples, on both shared and distributed-memory machines, are presented
in section 4. Conclusions are in section 5.

1.1 Background

In this section we describe the salient features of our flow solver that affect its parallelization.
We then review some of the basic properties of space-filling curves.

The flow solver was developed to solve the inviscid steady state Euler equation on
multi-level Cartesian grids with embedded boundaries. Such grids have recently become
popular largely because of the ease of grid generation around complicated geometries, along
with their robustness and automation [2, 6, 4]. Figure 1 illustrates a two dimensional
example of embedded boundary grids for purposes of discussion. Unlike typical body-
fitted structured or unstructured grids, with embedded boundary grids the geometry simply
intersects the underlying Cartesian grid in an essentially arbitrary way, creating general
polyhedral cells next to the solid body which need special discretizations. However the bulk

2

Uj

Ui

UR

UL

Figure 1: Illustration in two dimensions of Cartesian mesh with embedded boundaries. Also shown
are cells of different refinement levels, but adjacent cells are always 2:1.

of the grid contains regular Cartesian cells, so finite volume schemes can be accurately and
efficiently implemented. An essential ingredient for such methods is the use of a multi-
level grid, so that cells at different levels of refinement can be used to accurately discretize
both the geometry and the solution. This means some cells have more than one face in a
given coordinate direction, but a mesh ratio of 2:1 is strictly enforced. Details of the grid
generation can be found in [2].

The flow solver uses a finite volume discretization, where the flow quantities are stored
at the centroid of each cell. Each iteration proceeds by computing the flux Fij between cells
i and j, at the cell edges, using an equation of the form

un+1
j = un

j −
∆t

Vj

∑
faces of cell j

Fij(uL, uR)Aij . (1)

Here Vj is the volume (in three dimensions) of cell j, and Aij is the “projected normal
area” of the face between cells i and j. As is typical, the explicit iteration uses a multi-
stage Runge-Kutta scheme, and the iterations continue until steady state, when the solution
stops changing. Since the stencil is small and the scheme is explicit, communication takes
place only between nearest neighbors. The value of the flux at each edge is determined from
the solution as reconstructed from each adjacent cell, the left and right states uL and uR,
and a non-linear Riemann problem produces the single upwinded state u(uL, uR) where the
flux F is then evaluated. For a second order method, the value uL is computed from the
cell-centered value ui and the cell’s gradient ∇ui. Computing the gradient is again a local
operation, since it is based on solution values from only the nearest neighbors that share
an edge with the cell. Another important component of the flow solver is the multi-grid

3

acceleration scheme. The essence of this algorithm is to restrict the solution from the fine
grid to a coarser one, where a solution is cheaper to compute and for technical reasons
much of the error is reduced faster than on the fine grid. The correction to the solution is
then prolonged back to the fine grid. This idea is recursively applied, with three or more
levels often used in a multigrid hierarchy. For the numerical details of the flow solver see
[1, 3]. Note that in this application, some of the grid cells are full Cartesian hexahedra while
others are cut by the embedded geometry, but this aspect is orthogonal to the parallelization
efforts described below.

Although the grid generation for this type of grid has only recently been developed,
the algorithms and data structures used in the flow solver follow established methods [5].
Typical light-weight data structures for these kinds of irregular grids use an edge-based data
structure, which makes heavy use of indirect addressing. This consists of an array of cells
and an array of faces. Cell-based information, for example includes the solution vector at
each centroid, consisting of density,velocity and pressure. A cell does not know its nearest
neighbor in this scheme however, since it is not stored using multi-dimensional rectangular
indexing. Instead, the cells are ordered using space-filling curve indices, described next. The
array of faces contains the index into the cell array of the adjacent left and right cells for
each face. The only way cells exchange information with their neighbors is by sweeping over
the face list. For the irregular cells adjacent to the embedded boundary, these arrays are
augmented with additional information such as the surface normals, irregular cell centroids,
also needed for the updating eq. (1). Faces are ordered in the face array according to the
minimum index of their adjacent cells.

The face and cell arrays are ordered before the flow solution starts, for both good cache
performance and to prepare for the domain partitioning described in section 2. This ordering
is performed using space-filling curves. We briefly review here some of their important
properties; for more details see [18, 19, 20].

Space-filling curves (henceforth sfc) provide a linear ordering of a multi-dimensional
Cartesian mesh. The basic building block of the Peano-Hilbert curve is a “U” shaped
segment, which visits each cell in a 2 by 2 block, or an “N” shaped segment for a Morton
ordering, as shown in figure 2. Subsequent levels replace the coarse cell with fine cells which
are themselves visited consecutively by the basic curve. This implies the mesh is traversed
in essentially the same order (physically in space) on both a coarse and fine grid. Note
that a curve enters a cell from an adjacent cell through a common face, and leaves through
another face to a different adjacent cell. A cell is thus connected to two neighbors in the
one-dimensional ordering in the array of cells. This locality provides for good cache re-use.

2 Description of Parallel Flow Solver

We illustrate the points raised in the introduction by discussing the choices made in devel-
oping a new flow solver for the inviscid steady-state Euler equations on multi-level Cartesian
grids with embedded boundaries. Figure 3 shows a three-dimensional grid around a real-
istically complex vehicle that will be used as an example throughout the remainder of the

4

mja/b/sm 10/01, 6

Ames Research Center

Space-Filling Curves

Peano-Hilbert and Morton ordering in 2-D

At high enough resolution,

every

 pixel of space in a rectangular
domain is visited by the curve.

Level 0 Level 1

U-Order

N-Order
Level 2

Figure 2: Illustration of space-filling curves in two dimensions, both the Peano-Hilbert (“U”) and
Morton (“N”) orderings. Three levels of meshes are shown.

paper.

2.1 Domain Partitioning via Space-Filling Curves

The first step in implementing the flow solver using our hybrid distributed-memory pro-
gramming model is to partition the mesh in a load-balanced fashion. This use of explicit
domain decomposition and data replication is not a typical style for shared-memory ma-
chines, but is the essence of our hybrid approach. It is also much easier to implement using
shared memory. As is common with domain decomposition, each processor is assigned a
subdomain with a certain number of cells, and is responsible for updating those cells using
the “owner computes” rule. Each domain is surrounded by one layer of “overlap” cells, so
that a stencil update can be performed without communication. Each domain does not
update its overlap cells, but receives the updated values from the subdomain that does own
them after each update.

Since the underlying mesh is Cartesian, general purpose partitioners such as Metis [7]
are unnecessarily expensive. Instead, a natural choice for partitioning these types of grids
is to use space-filling curves [16, 13, 15]. Space-filling curves provide a one dimensional
ordering of a three dimensional mesh, and guarantee that each cell is adjacent to at least
two neighbors (see figure 4 for a two dimensional illustration of this). Just prior to flow
solution, the cells in the incoming Cartesian mesh are ordered using the space-filling curve
ordering. To improve cache reuse, the faces are also lexicographically sorted according to
the cell with the minimum sfc index. The total amount of “work” on a mesh is the sum

5

Figure 3: Cartesian mesh with embedded geometry representation for space shuttle example. The
domain is partitioned into 64 subdomains using Peano-Hilbert space-filling curves. Mesh and geom-
etry are colored by partition number.

of the work over the individual cells. In the Cartesian approach there are two distinct cell
types: regular Cartesian-aligned hexahedra, and general “cut-cell” polyhedra adjacent to
the body. These cell types require a different amount of computational work. Currently,
the cut-cells are empirically determined to be 1.5 times the work of a full (uncut) cell. As
with many codes, we do not directly account for the variation in number of faces, nor the
communication work that each partition has (a function of the shared faces). This value
was determined empirically using a linear least squares fit to the total execution time taken
from serial computations with different size meshes.

One elegant feature of the sfc reordering is that when combined with the work estimates
it is easy to partition the mesh into any number of subdomains at run-time. The number of
processors is a run-time parameter (obtained from the OMP NUM THREADS environment
variable), with the mesh partitioned using an on-the fly domain decomposition as it is
input. This alleviates the need to determine in advance the number of partitions, or to
re-partition if the number of available CPUS changes. Cells are assigned sequentially to the
next processor until each node’s assigned quota has been filled. (The assigned workload is
the total work on the mesh divided by the the number of processors). This can be thought
of using a garden hose analogy - point the hose to the first partition; when it is full, move
the hose to the second partition, etc. This is the step that transforms the global mesh
into its partitioned counterpart, relying on information which straddles both views of the

6

1 25 50 75 100

Figure 4: Sample two-dimensional space-filling curve on a mesh with total amount of work
= 100 work units.

mesh. It is clearly much easier to implement using shared memory than MPI directives.
At start-up time, we also ensure that memory associated with a sub-domain resides on the
intended CPU, by initializing it right after allocating it, since some OS implementations
wait until the first touch to allocate. After the read, the rest of the initialization and setup
work is done in parallel.

The work estimates themselves can be exceedingly well balanced, with typical differences
between the maximum and minimum load on the order of .0001%. This is easy to do,
since for unstructured meshes the granularity of the partitioning is plus or minus one cell.
Of course the work estimates are only a guess at the actual computational load, but the
numerical experiments show these to be quite accurate.

The partitioning of the faces follows the cells. As the faces are input, if a face points
to adjacent cells on the same partition, that partition owns the face. If the adjacent cells
belong to two partitions, the face is duplicated, and the respective cells are put on the
partition’s overlapping cell list. Each domain explicitly copies its overlapping cells from the
owner, so that a residual calculation can be done without inter-partition communication.
This architecture follows the standard message passing template, except in this case it is
implemented in shared memory rather than explicitly packing messages into paired sends
and receives. Figure 3 shows a domain partitioned into 64 subdomains, along with a cutting
plane through the mesh colored by partition number as well.

Table 1 presents the number of overlapping cells as a function of the number of partitions
and the size of the mesh. As can be seen in figure 5, space-filling curves have overlapping

7

Figure 5: Comparison of the number of overlap cells using the space-filling curve partitioning on a
multi-level mesh (see table 1) versus an idealized uniform mesh with the same total number of cells.

statistics that are close to the statistics one expects from a regular Cartesian mesh. On
meshes from between 1 and 9 million cells, the number of overlapping cells ranges from a
few percent on small numbers of processors to up to 25% of the cells. Note however that
in this last case, with 64 CPUS there are only 15K cells per cpu. As an additional bonus,
space-filling curves have locality properties that are beneficial for good cache performance
on each processor of a parallel machine.

1.0M Cells 4.7M Cells 9.0M Cells
#Parts #olap cells #nbors #olap cells #nbors #olap cells # nbors

8 76656 (7.5%) 3.7 267558 (5.6%) 6.2 448528 (5.0%) —
16 127159 (12.5%) 6.2 362724 (7.6%) 8.2 595177 (6.7%) 7.9
32 184418 (18.1%) 7.5 458174 (9.6%) 9.1 814642 (9.0%) 8.9
64 249929 (24.5%) 8.7 618866 (13.0%) 9.6 1070983 (11.8%) 8.7

Table 1: Statistics on the average number of overlap cells and the average number of neighbors the
partition communicates with for three different meshes using the space-filling curve partitioning.

Once the mesh is partitioned, the time stepping proceeds in SPMD fashion. Each
processor computes the gradient for each cell, copies the gradient for the overlap cells from
the adjacent processors, computes a residual, updates the cells it owns, and copies the new
overlap cell values from adjacent processors. Since this is an explicit finite volume code, large
chunks of code are executed in parallel with a coarser granularity than a typical fine-grained
loop level parallelization. For example, one of the large chunk includes calculating the time
step, computing the residual, and updating the solution. Another chunk is computing the
gradient over the entire subdomain and computing the limiter for it. The type and number

8

of cells on each domain varies, but as the numerical experiments show, the total time it
takes to do these calculations is balanced across partitions.

After each computational chunk, synchronization followed by an explicit communication
step is performed to update the copies of the overlap cells. Traditionally, these cells are
not duplicated with shared-memory programming - one updates one’s cells, and uses the
neighboring cell as needed. However for performance with the hybrid paradigm, local mem-
ory is associated with each subdomain. Each computational node allocates and fills its own
local memory for its partition, again not typical with shared-memory implementations. The
alternative shared-memory strategy would have been to allocate one large array, and assign
each partition a range of indices to update within the array. However, there is no way to
enforce the memory locality for each subdomain with such a strategy. The communication
step itself can be implemented in a very simple way using shared memory. For each overlap
cell j the location to obtain the updated state is computed once and saved on the receiving
processor. It is obtained using in essence a loop that looks like

// each partition performs the following procedure
for (j=0;j<my_num_overlapCells;j++){

p_myDomain_U[j] = p_otherDomain_U[j’s_index_in_otherGrid]
}

This shared-memory implementation requires a pointer p otherDomain U, determined
at run-time, directly into the other domain. It is the only such pointer required for sin-
gle grid calculations, with an additional shared-memory reference required for multigrid
restriction and prolongation calculations. In MPI this step requires send/receive pairs and
packing/unpacking of messages.

2.2 Multigrid via Space-Filling Curves

A second big design decision for the new flow solver is how to implement the multigrid accel-
eration. The steps include creating the coarse meshes, partitioning them, and implementing
the restriction and prolongation steps.

As with the sfc ordering performed with the initial mesh generation, the multigrid coarse
meshes are generated before the flow solution begins. Overall, the complete mesh prepara-
tion time, including initial mesh generation, space-filling curve ordering and multigrid mesh
coarsening, typically takes only 2 to 3 minutes for meshes with several million cells, (using
a 600 MHz SGI workstation), so we have not (yet) parallelized these steps. Since we use
unstructured data structures to represent the mesh, it is not a trivial matter for a cell to
coarsen: it must find its neighbors, check if they are coarsenable, and create the coarse face
lists from the fine face information.

The coarse meshes are generated from the fine mesh in a novel way which uses the same
sfc ordering as the partitioning. The key insight is to realize that this ordering places all
sibling cells of a given parent sequentially in the sfc-ordered mesh. Thus, each coarse cell
can be generated by agglomerating the (up to) eight fine cells in adjacent positions in the

9

Figure 6: Two dimensional example of Cartesian mesh coarsening. Note that some cells do
not coarsen because of the 1-irregular rule.

sfc-ordered mesh with a single pass. Cells are only allowed to coarsen if all the sibling
cells are at the same level; otherwise, a cell is left alone, and a finer level cell will try to
coarsen with its siblings by searching through the next eight cells. A second pass through
the mesh checks that two adjacent cells are not more than one refinement level apart (the
one-irregular rule), or the coarsening is disabled. Coarse mesh generation is thus a linear
time algorithm in the number of cells in the mesh.

The mesh coarsening algorithm is illustrated in two dimensions in figure 6. A realistic
example of the mesh coarsening is shown in figure 7 for a 4.5 million cell mesh. The
coarsening ratios in generating four coarser meshes are are 7.1, 6.5, 5.1 and 4.2, illustrating
the retardation of the 8 to 1 coarsening as the mesh irregularity increases as a fraction of
the total mesh. Nevertheless, the flow solver achieves excellent multigrid acceleration rates.
Numerical experiments consistently show convergence rates of .85 to .95, comparable to the
best 3D Euler solvers in the literature.

Once the coarse meshes are generated, they also need to be partitioned. The immediate
decision is whether to partition the coarse meshes to conform with the fine meshes, which
means the restriction step will have no communication, or whether to partition them inde-
pendently so the coarse grid computations are load balanced. Since the grids are multi-level,
they do not necessarily coarsen in the usual 8 to 1 ratio of uniform grids. Interfaces will
retard the coarsening ratios, and the increasing percentage of cut cells in the mesh may
lead to imbalanced work loads. Some multigrid implementations choose the partitioning
induced by the finer mesh, so that the only communication comes from coarse cells with
parent cells from two different meshes. Others partition the coarse mesh anew [9], and
then look for maximal overlap with a fine partition in assigning the coarse partitions to a
CPU. This is sometimes followed by a bartering algorithm where neighboring sub-domains

10

Figure 7: Sequence of coarser grid levels for a 4.5 million cell mesh. The coarsening ratios
are 7.1, 6.5, 5.1, and 4.2 in this example. (The last mesh is not shown.)

exchange boundary cells to try to minimize the communication.
With sfc-ordered meshes, we can implement either approach directly, since the enumer-

ation of the cells follows the same layout on the coarse and fine grids. We have chosen to
partition the coarse mesh in a load balanced way. This may lead to additional communi-
cation from coarse cells that straddle one or more partitions on the fine grid (illustrated
in Figure 8). However numerical experiments show that this potential bottleneck is not
encountered, since the multigrid scalability results are nearly as good as the single grid
results.

In many implementations, if there is a lot of communication the fine grid would first
coarsen itself, and then send the coarse values to the appropriate coarse partitions. However,
since most of the cells are on the same partition, this preliminary coarsening step isn’t
necessary, and the fine grid simply adds its value to the coarse data structure. Note that
this step needs some kind of synchronization for coarse cells that are shared by two or more
fine mesh partitions, as in figure 8. For the OpenMP implementation this is done using an
atomic directive in the restriction loop.

11

Figure 8: Coarse and fine grids are separately partitioned using the sfc ordering. Note that
fine cells on different partitions may restrict to the same coarse cell.

3 Conversion to MPI

The conversion of the flow solver to MPI started with the OpenMP implementation. Due
to the coarse granularity of the OpenMP parallelization, over half the code needed little
(under 30 lines) or no modification. In fact, of the 11,000 lines of code organized into 18
files, only the three I/O files changed substantially, with an additional 1800 lines of MPI
packing code, derived type assembly, etc.

One simple strategy made all the parallel loops work in both paradigms. The standard
loop over a sub-domain is wrapped with a macro as follows:

pragma omp parallel
{

int myPartitionNumber = GET_MY_PARTITION_NUM;

do_something_on_my_subdomain;
} /* -- end parallel region -- */

In OpenMP, the GET MY PARTITION NUM macro becomes a call to the function
omp get thread num(). With MPI code however all processors are running all the time,
and a parallel region does not need to be invoked like this. Every partition might as well
think of itself as partition 1, which the macro evaluates to in MPI. Where needed, additional
MPI get my procnum() calls are inserted. Of course, the reduction operations and all I/O
routines needed to be competely rewritten.

While the data structures involved in flow computations on a domain were suitable
for both paradigms, the data structures involved in any communication step had to be

12

partitions avg. # fine cells avg. # fine cells restricting to different partition
8 593824 46925 (7.9%)
16 296912 36206 (12.2%)
32 148456 28670 (19.3%)
64 74228 24284 (32.7%)
128 37114 21228 (57.2%)

Table 2: Average number of cells on the fine mesh per partition that communicate to the
coarse mesh on a different partition during the restriction step for a 4.7M cell mesh.

completely changed. This includes for example, multigrid restriction and prolongation,
and sharing of overlapping cell information between sub-domains. A shared memory-based
implementation is more naturally served by a GET operation: domain A gets its overlap
information from the owner domain B. This is efficiently accomplished by domain A with
the use of pointers to the overlap information in domain B. Translating this to message
based communication would require two steps: first, domain A has to request the overlap
information from domain B, then domain B has to return the overlap information. A more
efficient implementation for message based communication is to use a SEND operation:
domain B sends the information needed for the overlap to domain A. This eliminates the
first step of the get operation and requires only one communication step.

Table 2 shows the number of cells on the fine grid that restrict the solution to a different
partition on the coarser grid. As the number of CPUs increases, the number of cells per
CPU decreases, but the percentage that communicate increases. It is clear that until very
high numbers of CPUs are reached, the percentage of the fine and coarse grids on the same
partition is very high, minimizing the communication bandwidth required for restriction
and prolongation Note that on 64 CPUS there are only 75K fine grid cells per node and
24K coarse grid cells with this mesh, and the communication percentages are rising, yet the
scalability results are not greatly affected by this. However, if our final goal were only an
MPI implementation, a better choice may have been to partition the coarse grid to follow
the fine grid (and also to ensure that the fine partitions ended on coarse cell boundaries).
This was not investigated further.

4 Computational Experiments

The scalability studies presented here use a variety of mesh sizes on two different machine
architectures. The CPU times measure ten cycles, where the work per cycle includes a 5
stage Runge Kutta scheme with gradient evaluations at every stage. The timing excludes
the cost of the initial start-up and final I/O.

In the first experiment we compare the OpenMP and MPI versions of the flow solver
for a single grid This was run on the NASA Ames SGI Origin 3600, which has 600MHz
R14000 MIPS cpus. This shared-memory machine has 1024 CPUS, of which subsets were

13

Figure 9: Performance comparison of MPI and OpenMP code on SGI Origin 3600 for single
grid computations.

reserved for this study. The machine was not in dedicated mode for these runs. For the
OpenMP experiments, the environment variable OMP DYNAMIC was set to false. The
MPI implementation in this experiment is the native SGI version. Experiments show that
MPICH is slower for these tests (see [8]) and it is not included in this set of experiments.
The mesh contains 4.7 million cells, although also included here is an example with a smaller
mesh of 1.6 million cells run on smaller numbers of nodes. Note that the 4.7M cell mesh
has fewer than 7200 cells per CPU on 640 processors, and the 1.6 million cell mesh has 6250
cell on 256 nodes. The smaller mesh speedup curve shows the superlinear speedup that
comes from fitting more of the mesh in cache. On the larger mesh, speedups of 599 for the
OpenMP version and 486 for the MPI version were obtained on 640 processors. Obviously
the space-filling curve load balancing algorithm is doing a good job of partitioning the work
to obtain this degree of scalability. The computation does not fit on one processor, so
scalability is measured relative to timings on 8 CPUs.

As figure 9 shows, initially both MPI and OpenMP perform equivalently, but the MPI
version begins to slow down on more then 320 cpus. This seems to indicate slightly greater
overhead in the MPI version. If this is the case, then the slowdown should be more pro-
nounced when using multigrid, which has greater emphasis on communication.

The next set of experiments includes the multigrid acceleration scheme in comparing
OpenMP and MPI. Figure 10 shows results using the same 4.7M cell mesh. We use a
multigrid W-cycle with three grid levels and one pre- and one post-sweep per level. The
MPI runs has a speedup of 392 on 640 CPUS. The OpenMP achieves 514 on 640 CPUS,
measured relative to a 32 node baseline. For reasonable numbers of CPUs, the multigrid

14

Figure 10: Performance comparison of MPI and OpenMP code on SGI Origin 3600 using
multigrid W-cycle with 3 grid levels.

scalability is slightly worse than for a single grid, despite the fact that surface to volume
ratio of the partitioning is increasing rapidly. The 4.7 million cell fine mesh has 700,000
cells in the first coarser mesh (for an average of approximately 1100 cells per node on 640
CPUs), and 105K cells on the second coarser mesh (for an average of only 180 cells per
node), but the fact that the multigrid communication overhead is creeping up (the results
in Table 2) has little effect.

At first glance, these results appear surprising in that the OpenMP version outperforms
the MPI version. This holds even when only the core components of the code are executed,
i.e. no gradients, no limiters, and no multigrid. The OpenMP version is still somewhat
more scalable. Detailed instrumentation reveals that the communication routine where the
solution in the overlap cells is retrieved from neighboring partitions (OpenMP version),
or buffered and sent to neighbors (MPI version), consistently takes between 2 to 3 times
longer in MPI. This additional overhead is a small fraction of the runtime relative to the total
integration time of the solution. However on larger numbers of CPUs this overhead becomes
increasingly dominant as the rest of the code speeds up. This situation is exacerbated when
gradients are included as part of the computation, since three times as much information
needs to be communicated twice per solution update (once for the gradients themselves,
and once for the limited gradients in the overlap cells).

Since we are using the native SGI MPI library, we can only speculate as to what is
causing this slowdown. Analysis using Paraver1[14] shows that the cause is internal to the

1Thanks to Gabriele Jost at NASA Ames for the Paraver results.

15

Figure 11: Scalability study on Linux cluster using MPICH – single 4.7M cell grid and
multigrid with 3 levels.

MPI calls, with an order of magnitude more instructions being executed inside the MPI
calls than the OpenMP version. Variations using Send/Irecv or Isend/Recv combinations
do not affect this outcome. Actually we believe that our MPI performance is quite good,
and similar to other careful MPI applications; what is surprising is the scalability of the
OpenMP code.

The last experiment, in figure 11, shows results of the MPI code using MPICH on 16
node 2.4 GHz Pentium 4 Linux cluster with a Gigabit ethernet switch. The single grid
and multigrid speedups are essentially identical, although the actual wall clock time of the
multigrid is approximately 40% more than for a single grid. Since the timings are so close,
it is clear that the additional communication of multigrid is easily handled by the network.

5 Conclusions

We have presented our approach to shared-memory programming using a hybrid paradigm.
By adopting many of the explicit domain decomposition and memory management tech-
niques of distributed-memory programming but implementing them with the substantially
easier shared-memory constructs, we can demonstrate performance with some of the best
scalability results for shared memory on a real application yet obtained. Similar results
were found in [17]. Our scalability results are especially significant since OpenMP results
using loop-level constructs found in the literature have been so disappointing.

By careful attention to memory placement and locality, our OpenMP implementation is

16

actually marginally faster than MPI. We believe this is because there is less time consumed
packing and unpacking buffers, and because of the overhead of MPI. The one-sided commu-
nication available in MPI2 may help in this regard. Additional steps for better performance
would be to investigate use of parallel I/O. Ideas along the lines of those in [10] could also
be very useful in further scalability improvements.

The hybrid paradigm uses a restricted set of OpenMP functionality, and follows closely
the architecture of MPI codes. Thus we believe that an automatic conversion tool from
OpenMP to MPI should be possible to a large degree. Alternatively, a shared-memory
layer sitting on top of distributed memory, such as found in Treadmarks, Hamster, DSM-
THREADS and the like, might provide good performance with the hybrid paradigm. How-
ever, this software was either not available or insufficiently stable for us to include here.

Acknowledgments

Marsha Berger was supported by AFOSR grant F19620-00-0099 and by DOE grants DE-
FG02-00ER25053 and DE-FC02-01ER25472. David Marshall was supported by NASA’s
Graduate Student Research Program.

References

[1] M.J. Aftosmis, M.J. Berger and G. Adomavicius. A Parallel Multilevel Method for
Adaptively Refined Cartesian Grids with Embedded Boundaries. AIAA Paper 2000-
0808, Reno, NV., Jan. 2000.

[2] M. Aftosmis, M. Berger and J. Melton. Robust and efficient Cartesian mesh generation
for component-based geometry. AIAA J. 36(6), June, 1998.

[3] M.J. Berger, M.J. Aftosmis and G. Adomavicius. Parallel Multigrid on Cartesian
Meshes with Complex Geometry. In Computational Fluid Dynamics: Trends and Ap-
plications Elsevier, 2001. Proc. Parallel CFD Conf., Trondheim, Norway, May, 2000.

[4] E. Charlton and K. Powell. An Octree Solution to Conservation Laws Over Arbitrary
Regions (OSCAR), AIAA paper 97-0198, Jan., 1997.

[5] A. Jameson, W. Schmidt, and E. Turkel. Numerical Solutions of the Euler Equations
by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA Paper
81-1259.

[6] S. Karman Jr.. SPLITFLOW: A 3D Unstructured Cartesian/Prismatic Grid CFD
Code for Complex Geometries, AIAA paper 95-0343, Jan., 1995.

[7] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. Technical Report, Dept. of Computer Science TR95-035, University
of Minnesota, 1995.

17

[8] G. R. Luecke, M. Kraeva, and L. Ju. Comparing the Performance of MPICH with
Cray’s MPI and with SGI’s MPI, Concurrency and Computation: Practice and Expe-
rience, 2002.

[9] D. Mavriplis. Three-Dimensional High-Lift Analysis Using a Parallel Unstructured
Multigrid Solver. ICAS Report No. 98-20, May, 1998.

[10] J. No, S. Park, J. Perez and A. Choudhary. Design and Implementation of a Parallel
I/O Runtime System for Irregular Applications. J. Parallel and Distributed Computing
62 (2), Feb., 2002.

[11] L. Oliker and R. Biswas. Parallelization of a dynamic unstructured algorithm using
three leading programming paradigms. IEEE Trans. Parallel Distributed Systems 11,
2000.

[12] L. Oliker, X. Li, P. Husbands and R. Biswas. Effects of Ordering Strategies and Pro-
gramming Paradigms on Sparse Matrix Computations. SIAM Review 44 No. 3, 2002.

[13] M. Parashar and J.C. Browne. Distributed Dynamic Data-Structures for Parallel Adap-
tive Mesh Refinement. Proc. Intl. Conf. High Performance Computing, (1995).

[14] See http://www.cepba.upc.es/paraver.

[15] J.R. Pilkington and S.B. Baden. Dynamic partitioning of non-uniform structured work-
loads with spacefilling curves. IEEE Trans. Parallel and Distrib. Systems 7(3), March,
1996.

[16] J.K. Salmon and M.S. Warren and G.S. Winckelmans. Fast parallel tree codes for
gravitational and fluid dynamical N -body problems. Intl. J. Supercomp. Appl. 8(2),
1994.

[17] H. Shan, J.P. Singh, L. Oliker and R. Biswas. A Comparison of Three Programming
Models for Adaptive Applications on the Origin2000. J. Parallel and Distributed Com-
puting 62(2), Feb., 2002.

[18] X.Liu and G. Schrack. The spatial U-order and some of its mathematical characteristics.
Proc. IEEE Pacific Rim Conf. on Communications, Computers and Signal Processing.
Victoria B.C., Canada, May, 1995.

[19] X.Liu and G. Schrack. Encoding and decoding the Hilbert order. Software – Practise
and Experience, 26(12), Dec. 1996.

[20] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

18

